SE2 reaction in noncarbon system: Metal-halide catalysis for dehydrogenation of ammonia borane
نویسندگان
چکیده
An electrophilic substitution (SE) reaction of BN isosteres has been investigated for the dehydrogenation of ammonia borane (AB) by metal chlorides (MCl2) using various ab initio calculations. In contrast to the typical SE reaction occurring at the carbon atom, the nitrogen atom in AB serves as the reaction center for the SE reaction with the boron moiety as the leaving group when the MCl2 approaches the AB. The SE2 backside reaction is favored as a trigger step for the dehydrogenation of AB by the MCl2 The SE2 reaction is found for 3d-transition-metal chlorides (e.g., FeCl2, CoCl2, NiCl2, CuCl2, and ZnCl2), while PdCl2 leads to the dehydrogenation of AB by a direct B-H σ-bond activation, similar to most organometallic catalysts. Interestingly, the polymerization of AB promoted by MCl2 can be explained with the similar SE2 mechanism, and the dehydrogenation of the BN derivative 3-methyl-1,2-BN-cyclopentane (CBN) bearing a carbon backbone ring also follows the SE2 reaction. In particular, the experimental observation that the use of metal-chloride catalysis decreases the by-products obtained during the hydrogenation of AB can be explained by our mechanism involving the SE2 reaction. This work is helpful for the development of novel metal-halide catalysts for practical hydrogen storage materials, including the BN moiety.
منابع مشابه
A DFT investigation of the potential of porous cages for the catalysis of ammonia borane dehydrogenation.
Full DFT based quantum mechanical studies reveal that zero dimensional porous structures, especially the newly proposed phosphorus incorporated organic cages, can be excellent catalysts for the dehydrogenation of ammonia borane.
متن کاملOne-step seeding growth of magnetically recyclable Au@Co core-shell nanoparticles: highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane.
Magnetically recyclable Au@Co core-shell nanoparticles were successfully synthesized in a one-step seeding-growth process within a few minutes. They were thermally stable and exhibited higher catalytic activity toward the dehydrogenation of ammonia borane than Au-Co alloy and the pure metal counterparts. This is a large enhancement in the catalytic activity of core-shell structured nanoparticle...
متن کاملMolybdenum Catalyzed Ammonia Borane Dehydrogenation: Oxidation State Specific Mechanisms
Though numerous catalysts for the dehydrogenation of ammonia borane (AB) are known, those that release >2 equiv of H2 are uncommon. Herein, we report the synthesis of Mo complexes supported by a para-terphenyl diphosphine ligand, 1, displaying metal-arene interactions. Both a Mo(0) N2 complex, 5, and a Mo(II) bis(acetonitrile) complex, 4, exhibit high levels of AB dehydrogenation, releasing ove...
متن کاملTransition metal catalysed ammonia-borane dehydrogenation in ionic liquids.
Significant advantages result from combining the disparate hydrogen release pathways for ammonia-borane (AB) dehydrogenation using ionic liquids (ILs) and transition metal catalysts. With the RuCl(2)(PMe(3))(4) catalyst precursor, AB dehydrogenation selectivity and extent are maximized in an IL with a moderately coordinating ethylsulfate anion.
متن کاملExploring the effectiveness of different Lewis pair combinations in caged structures for the catalysis of ammonia borane dehydrogenation: a DFT study.
Zero dimensional cage structures containing four phenyl rings separated by imine linkers have recently been synthesized. In the current work, through a computational investigation using density functional theory (DFT), we demonstrate that modifying such cages by replacing the 2, 4, 6 carbon atoms in the phenyl rings to yield new rings, as well as replacing the imine moiety in the linker by othe...
متن کامل